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a b s t r a c t

Stage-structured population models are commonly used to understand fish population dynamics and addi-

tionally for stock assessment. Unfortunately, there is little theory on the optimal harvest of stage-structured

populations, especially in the presence of stochastic fluctuations. In this paper, we find closed form optimal

equilibrium escapement policies for a three-dimensional, discrete-time, stage-structured population model

with linear growth, post-harvest nonlinear recruitment, and stage-specific pricing and extend the analytic

results to structured populations with environmental stochasticity. When only fishing reproductive adults,

stochasticity does not affect optimal escapement policies. However, when harvesting immature fish, the

addition of stochasticity can increase or decrease optimal escapement depending on the second and third

derivative of the recruitment function. For logistic recruitment, stochasticity reduces optimal immature es-

capement by a multiplicative factor of one over one plus the variance of the environmental noise. Using hard

clam, Mercenaria mercenaria, as an example and assuming Beverton–Holt recruitment, we show that opti-

mal fishing of hard clam targets the immature stage class exclusively and that environmental stochasticity

increases optimal escapement for low discount rates and decreases optimal escapement for high discount

rates.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Fisheries biologists, managers and economists widely recognize

that traditional one-dimensional bioeconomic models are too simple

for developing management guidelines for the majority of real-life

fisheries [1], as policies derived from such models can drastically re-

duce profits and stock sizes when naively applied to age-structured

populations [2]. While determining optimal age-specific harvest poli-

cies is a classic problem in bioeconomics [3–8], and an active area

of both theoretical and applied research [9–16], the effect of stage

structure and environmental stochasticity on optimal fisheries man-

agement is poorly understood.

Stage-structured models are often used to understand fish pop-

ulation dynamics and perform stock assessment [17,18]. It is usu-

ally more convenient for managers to obtain data on fish size or life

stage rather than age. Techniques for aging organisms can be expen-

sive and time consuming and in extreme cases logistically infeasible

[19]. In addition, fish prices are often based on discrete size classes

or life stages [20,21]. While developing optimal harvest rules for size

and stage-structured populations can potentially improve fisheries
∗ Corresponding author: Tel.: 530-574-1490.

E-mail address: mhh88@cornell.edu, matthematical@gmail.com (M.H. Holden).
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anagement, it is more challenging to solve for optimal strategies in

his framework due to the lack of sparsity in the equations for stock

ynamics.

Past studies have simplified the problem by limiting transitions

etween stage classes [22,23] or using continuous time models, in-

luding two-dimensional ordinary differential equations (e.g. [24])

nd partial differential equations [25,26]. However, fisheries biolo-

ists usually use discrete-time models for stock assessment [27] and

ariability among individuals within a population can lead to a wide

ange of stage transitions, previously unexplored with respect to op-

imization.

Tahvonen’s model [23] is the most similar to our deterministic

etup, but differs in a few key ways. We assume that harvest occurs

rior to growth and recruitment, as is usually the case for migrating

sh populations such as eel and salmon [28,29] and that individuals

an skip stages. However, the biggest difference between our two ap-

roaches is that we consider the addition of environmental stochas-

icity.

While the effect of environmental stochasticity on optimal harvest

as been widely studied for one-dimensional bioeconomic models

e.g. [30]), little is known about how stochasticity affects optimal har-

est in structured populations. Of the few studies that exist, stochas-

icity is typically only included in the form of random recruitment,

http://dx.doi.org/10.1016/j.mbs.2015.08.021
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mbs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2015.08.021&domain=pdf
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nd usually independent of spawning biomass [12,22]. In addition,

olutions heavily rely on numerical simulation and error-bound ap-

roximation [22,31].

In this paper, to our knowledge, we provide the first analytic opti-

al stationary escapement solution for a demographically structured

opulation model with endogenous, nonlinear recruitment and envi-

onmental stochasticity affecting all classes. We find that with the

ddition of environmental stochasticity, the optimal escapement of

eproductive adults remains unchanged from the deterministic case,

f harvest occurs prior to recruitment. However, in the case of imma-

ure harvest, fishing should either be more aggressive or conserva-

ive than the deterministic case depending on the second and third

erivatives of the recruitment function. For example, if the recruit-

ent function is logistic, escapement should decrease by a factor of

ne over one plus the variance of the environmental noise. We use

istorical data from New York state’s hard clam fishery to provide a

oncrete example of our theoretical results.

. The deterministic model

Consider a harvested stage-structured fish population, where

vents occur in the following order: (1) census (2) harvest, (3) repro-

uction, and (4) natural mortality and growth. That is,

1,t+1 = R(B3,t − ht) + a11B1,t (1)

2,t+1 = a21B1,t + a22(B2,t − ηt) (2)

3,t+1 = a31B1,t + a32(B2,t − ηt) + a33(B3,t − ht), (3)

here B1, t, B2, t, and B3, t are the biomass of juvenile (stage 1), im-

ature (stage 2) and adult (stage 3) fish at time t, respectively. The

uvenile stage consists of fish too small to reproduce or catch. The im-

ature stage consists of all fish large enough to catch, but still cannot

eproduce. At time t, ht and ηt units of biomass are harvested from the

dult and immature fish population and we define σt ≡ B3,t − ht and

t ≡ B2,t − ηt as the corresponding amount of adult and immature

iomass that escape harvest. The remaining fish survive and grow,

here aij is the per unit biomass contribution, from the biomass that

scaped harvest in stage j, at time t, to the biomass in stage i, at time

+ 1.

We assume, 0 ≤ aij ≤ mi/mj, for all i > j, where mi is the average

ass of a stage i individual and that aij < 1 for all i = j. This means

hat the population’s biomass can only increase through reproduction

nd transitioning between different stages. If aii were greater than

ne for some i, then, in the absence of harvest, an initial amount of

iomass in the ith stage would grow to infinity, even if there was no

eproduction.

Adults that escape harvest, reproduce, generating offspring with

otal biomass described by a bounded, positive, smooth, concave,

ensity-dependent recruitment function R(σ t), where σ t is the

pawning biomass at time t and R(0) = 0. We can write the model

n matrix notation as

�
t+1 = A(�Bt −�ht) + �Rt , (4)

here

�
t =

(
B1,t

B2,t

B3,t

)
, A =

(
a11 0 0
a21 a22 0
a31 a32 a33

)
,

�h =
(

0
ηt

ht

)
, �Rt =

(
R(B3,t − ht)

0
0

)
.

1, t is bounded for all time, because R is bounded and a11 < 1. If fol-

ows that B2, t and B3, t are bounded since aij < 1 for i = j.
Note, the model unconventionally tracks biomass rather than pop-

lation abundance. In classic stage-structured models of abundance,

ij is the probability of an individual surviving and transitioning from

tage j to stage i. However, in our model, aij is a composite parameter

hich additionally includes growth. Because of our assumptions on R

nd aij, a simple rescaling, from biomass to abundance, of any admis-

ible parameterization of (4) yields a valid parameterization of the

lassic stage-structured model presented in [32, Chs. 3, 4 and 16]. For

xample, if âi j is an entry in the classic transition matrix model, then

ˆi j = ai jm j/mi, where mi is the average mass of a stage i individual.

We wish to maximize total discounted revenue, where revenue is

linear function of harvest,

ax
ht ,ηt

{
∞∑

t=0

ρt(p3ht + p2ηt)

}
, (5)

ith p2 and p3, the price per unit biomass of immature and adult fish,

espectively, and ρ = 1/(1 + δ), the discrete discount factor, with dis-

ount rate δ ≥ 0. Harvest is also subject to the constraints 0 ≤ ht ≤ B3, t

nd 0 ≤ ηt ≤ B2, t.

. Analysis of the deterministic model

.1. Optimal equilibrium escapement

We use the Karush–Kuhn–Tucker theorem (p. 61 of [1]) to solve for

he equilibrium optimal harvest policy. The Lagrangian for the prob-

em is

=
∞∑

t=0

ρt{p3ht + p2ηt + ρλ1,t+1[R(B3,t − ht) + a11B1,t − B1,t+1]

+ρλ2,t+1[a21B1,t + a22(B2,t − ηt) − B2,t+1]

+ρλ3,t+1[a31B1,t + a32(B2,t − ηt) + a33(B3,t − ht) − B3,t+1]

+μ1,t ht + μ2,t [B3,t − ht ] + μ3,tηt + μ4,t [B2,t − ηt ]}
(6)

here ρλi,t+1 is the current value shadow price for Bi, t, the money

omeone would pay for a small additional amount of biomass in the

th stage at time t + 1 and μi, t are the multipliers for the inequal-

ty constraints on harvest. The Karush–Kuhn–Tucker necessary con-

itions for and optimal solution are

a11λ1,t+1 + ρa21λ2,t+1 + ρa31λ3,t+1 − λ1,t = 0, (7)

a22λ2,t+1 + ρa32λ3,t+1 − λ2,t + μ4,t = 0, (8)

a33λ3,t+1 + ρR′(B3,t − ht)λ1,t+1 − λ3,t + μ2,t = 0, (9)

p2 − ρa22λ2,t+1 − ρa32λ3,t+1 + μ3,t − μ4,t = 0, (10)

p3 − ρR′(B3,t − ht)λ1,t+1 − ρa33λ3,t+1 + μ1,t − μ2,t = 0, (11)

1,t ht = 0 and μ2,t [B3,t − ht ] = 0, (12)

3,tηt = 0 and μ4,t [B2,t − ηt ] = 0, (13)

nd μi,t ≥ 0 for all i ∈ {1, 2, 3, 4}. (14)

At steady state, the above system can be solved analytically, yield-

ng optimal equilibrium escapement rules for immature and adult

iomass, which we define as s∗ and σ ∗, respectively. We use the

tar superscript (∗) and the omission of the time subscript to denote

teady state values for each variable under the optimal equilibrium
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escapement rule (e.g. B∗
3 is the optimal pre-harvest adult biomass at

steady state). Solving (7)–(14), at steady state, yields three optimal

regimes depending on the parameters.

In the first regime (Case 1), the discounted value of immature

fish, as a result of survival and growth, is greater than the marginal

value of harvesting immature fish today, ρ(a22 p2 + a32 p3) > p2. In

other words, fish are more valuable in the water than on the dock.

Therefore, it is optimal to only fish adults. Alternatively, if ρ(a22 p2 +
a32 p3) < p2, it is optimal to exclusively fish immatures (Case 2), but

in such a way that the same amount of adult biomass escapes to re-

produce as in Case 1. However, provided a large enough fraction of ju-

veniles skip a stage to become adults (a31 > 0) and sufficient escaped

adults also survive (a33 > 0), there can be a surplus of adults above

optimal adult equilibrium escapement, even when harvesting all of

the immatures (Case 3). In this regime, it is optimal to harvest all of

the immatures and some of the surplus adult biomass. However, op-

timal adult equilibrium escapement is higher in this case than in Case

1 because the manager is forced to harvest some adults despite them

being less valuable than immatures. Since increasing adult biomass

increases the more valuable immature biomass prior to harvest, it is

optimal to leave more adults in the water. To state these cases pre-

cisely it is useful to define the following quantity,

α ≡ (1 − ρa11)(1 − ρa22)(1 − ρa33)

ρ3a21a32 + ρ2a31(1 − ρa22)
. (15)

Case 1. If ρ(a22 p2 + a32 p3) > p2, then it is optimal, at steady state,

to only harvest adults, letting σ ∗ adult biomass escape harvest,

where σ ∗ is the solution to R′(σ ∗) = α. In this case the equilibrium

biomasses, shadow prices, harvests and multipliers are

B∗
1 = R(σ ∗)

1 − a11

, B∗
2 = a21R(σ ∗)

(1 − a11)(1 − a22)
,

B∗
3 =

[
a31 + a21a32

1 − a22

]
R(σ ∗)
1 − a11

+ a33σ
∗, (16)

λ∗
1 = ρ2 p3a21a32 + ρp3a31(1 − ρa22)

(1 − ρa11)(1 − ρa22)
,

λ∗
2 = ρp3a32

1 − ρa22

, λ∗
3 = p3, (17)

h∗ = (a31 − a31a22 + a21a32)R(σ ∗)
(1 − a11)(1 − a22)

− (1 − a33)σ
∗, η∗ = 0, (18)

μ∗
1 = μ∗

2 = μ∗
4 = 0, μ∗

3 = ρ(a22 p2 + a32 p3) − p2

1 − ρa22

> 0. (19)

For the following two cases it is useful to define the quantity

β ≡ (1 − a33)σ
∗

a32

− a31R(σ ∗)
a32(1 − a11)

, (20)

where σ ∗ is the solution to R′(σ ∗) = α.

Case 2. If ρ(a22 p2 + a32 p3) < p2 and β ≥ 0, then it is optimal, at

steady state, to harvest only immatures, letting s∗ = β immature

biomass escape harvest, so that adult spawning biomass is σ ∗. The

equilibrium biomasses, shadow prices, harvests and multipliers are

B∗
1 = R(σ ∗)

1 − a11

,

B∗
2 = (a21a32 − a31a22)R(σ ∗)

a32(1 − a11)
+ a22(1 − a33)σ

∗

a32

, B∗
3 = σ ∗ (21)

λ∗
1 = ρp2a21a32 + p2a31(1 − ρa22)

a32(1 − ρa11)
,

λ∗
2 = p2, λ∗

3 = p2(1 − ρa22)

ρa32

, (22)
h∗ = 0,

∗ = (a21a32 − a31a22 + a31)R(σ ∗)
a32(1 − a11)

− (1 − a22)(1 − a33)σ
∗

a32

, (23)

∗
2 = μ∗

3 = μ∗
4 = 0, μ∗

1 = p2 − ρ(a22 p2 + a32 p3) > 0. (24)

ase 3. If ρ(a22 p2 + a32 p3) < p2 and β < 0, then it is optimal, at

teady state, to harvest all immatures (s∗ = 0), and in addition har-

est some adults such that σ̂ ∗ adult biomass escapes harvest, where

ˆ ∗ is the solution to

′(σ̂ ∗) = p3(1 − ρa33)(1 − ρa11)

ρ2(p2a21 + p3a31)
. (25)

n this case the equilibrium biomasses, shadow prices, harvests and

ultipliers are

∗
1 = R(σ̂ ∗)

1 − a11

, B∗
2 = a21R(σ̂ ∗)

1 − a11

, B∗
3 = a31R(σ̂ ∗)

1 − a11

+ a33σ̂
∗ (26)

∗
1 = ρ(a21 p2 + a31 p3)

1 − ρa11

, λ∗
2 = p2, λ∗

3 = p3, (27)

∗ = a31R(σ̂ ∗)
1 − a11

+ (a33 − 1)σ̂ ∗, η∗ = B∗
2, (28)

∗
1 = μ∗

2 = μ∗
3 = 0, μ∗

4 = p2 − ρ(a22 p2 + a32 p3) > 0. (29)

Note that if ρ(a22 p2 + a32 p3) = p2, exactly, then it is equally prof-

table to harvest immatures or adults. In this case, it suffices to use

he strategy defined in Case 1 to maximize discounted net revenue,

t steady state, and hence we do not write this as a separate case.

Because R is bounded and smooth, by the intermediate value theo-

em applied to the function αx − R(x), the optimal equilibrium, pre-

ented above, always exists if R′(0) > α. This condition guarantees

hat at low population biomasses a fish in the water is worth more

han the revenue generated from harvesting that fish.

.2. Closed form solutions for logistic and Beverton–Holt recruitment

Depending on the functional form of the recruitment function,

(σ ), it is possible to obtain closed form solutions for the optimal es-

apement at equilibrium. For example, Let R be the logistic map with

arrying capacity k, and growth rate r,

R(σ ) = rσ
(

1 − σ

k

)
, (30)

nder the restriction that 0 < σ < k, k > 0, and r > α. In this case, if

(a22 p2 + a32 p3) > p2, optimal adult escapement is

σ ∗ = k

2r

[
r − (1 − ρa11)(1 − ρa22)(1 − ρa33)

ρ3a21a32 + ρ2a31(1 − ρa22)

]
. (31)

f ρ(a22 p2 + a32 p3) < p2 and β ≥ 0, we harvest no adults and let
∗ = β immatures escape harvest to achieve a spawning biomass of
∗. If ρ(a22 p2 + a32 p3) < p2 and β < 0, then we harvest all of the

mmatures and some adults, letting

σ̂ ∗ = k

2r

[
r − (1 − ρa11)(1 − ρa33)

ρ2(a21 + a31)

]
(32)

dult biomass escape harvest. As a second example, consider the

everton–Holt recruitment function,

R(σ ) = b1σ

1 + b2σ
, (33)

ith parameters b1 > α and b2 > 0. In this case,

σ ∗ = 1

b2

[√
ρ2b1[ρa21a32 + a31(1 − ρa22)]

(1 − ρa11)(1 − ρa22)(1 − ρa33)
− 1

]
. (34)
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n Case 3,

σ̂ ∗ = 1

b2

[√
ρ2b1[a21 + a31]

(1 − ρa11)(1 − ρa33)
− 1

]
. (35)

o confirm that our above analysis is in fact producing the best con-

tant escapement policy, at steady state, we compared our analytic

olutions to the best escapement strategies found via numerical op-

imization (see online supplementary information).

.3. Stability

Note that the positive biomass equilibrium of system (1) is not al-

ays stable. For example, in the absence of harvest, if a32 = a21 = 1,

11 = a22 = a33 = a31 = 0, and R is given by the logistic Eq. (30), the

opulation dynamics of a single cohort, sampled every three years as

dults, reduces to the one-dimensional logistic map, whose trajecto-

ies exhibit periodic and chaotic behavior for growth rates between

hree and four [33]. However, it can be shown that the Jacobian of

he linearized biomass system dynamics, evaluated at optimal adult

scapement, has a dominant eigenvalue between one and zero if we

ssume a11 = a22 = a33 < ρ and a31 = 0. This case actually includes

he logistic case described above, which is not a contradiction be-

ause optimal escapement in that example is always below one half

f the unstable positive biomass equilibrium for B3, t in the absence

f harvest.

Unfortunately, when a31 	= 0, computing the roots of the charac-

eristic equation can be quite complicated, and therefore we leave

full, rigorous, stability analysis of the population dynamics (1)–(3)

nd optimality system (7)–(14) as an open area of research. For all

umerical examples provided in this paper, we confirmed that from

everal different initial conditions, the biomass of the three classes

pproached optimal economic equilibrium when deploying the ap-

ropriate escapement rule, out of those described in Cases (1)–(3).

. Stochastic model and analysis

In simple one-dimensional bioeconomic models, constant escape-

ent policies can be optimal even when the biomass dynamics are

tochastic. In this section, we explore these policies for structured

opulations. To simplify the analysis we consider two cases, one

here only adult fish are harvested and the other where only im-

atures are harvested (which we justify after analyzing the stochas-

ic models). We show that environmental stochasticity affects opti-

al harvest in the two stage classes differently. Within each of these

ases we first consider the age-structured case with a31 = a11 = a22 =
33 = 0, and for the case of adult harvest extend the analysis to mod-

ls closer to (1).

.1. When harvesting only adults

Consider a simplified age-structured model where adults die after

pawning and only adult fish are harvested,

1,t+1 = z1,t+1R(B3,t − ht)

2,t+1 = z2,t+1a21B1,t

3,t+1 = z3,t+1a32B2,t . (36)

The random variables zi, t are chosen such that the sequences

zi, t}t ≥ 1 are each independently and identically distributed on a

losed interval contained in (0, ∞) with E[zi,t ] = 1, in such a way that

i, t and z j,t+m are independent for all i, j ∈ {1, 2, 3} and m > 0. In other

ords, we are allowing for correlation between age classes, but no

emporal autocorrelation. For example, one possibility for modeling

he noise is zi,t = z̃t + εi,t , with E[z̃t ] = q, and E[εi,t ] = 1 − q, where 0

q ≤ 1. When q = 0, the age classes experience independent, random
uctuations. When q = 1, the noise is perfectly correlated between

ge classes.

Note that in the equation for B1,t+1, in (36), there is no random

ariable in the argument of the recruitment function, R. We are as-

uming that stochasticity affects reproductive adult biomass prior

o harvest, but that stochasticity does not affect adult biomass be-

ween harvest and reproduction. This is a standard assumption in

ne-dimensional bioeconomic models [1,30].

Lastly, we assume that the population is “self-sustaining” at the

ptimal escapement level. For example, in the case where a31 = a11 =
22 = a33 = 0, σ ∗ self-sustaining means that z1z2z3a32a21R(σ ∗) ≥ σ ∗,

here zi is the lowest value zi, t can attain. This assumption is stan-

ard in stochastic, one-dimensional bioeconomic models [1] because

t guarantees, B3,t − σt > 0, when the system is in stationary distri-

ution, and allows for solutions achieved through stochastic dynamic

rogramming arguments.

While the stochastic realizations of juvenile and immature

iomass in years t − 2 and t − 1 influence B3, t, under the above as-

umptions, the lagged effect of stochasticity on the future recruit-

ent of juveniles is eliminated when using a self-sustaining adult

scapement rule.

Because juvenile and immature fish always grow or die, and ma-

ure fish die after spawning, Eq. (36) yields three independent co-

orts. Therefore, it suffices to find the optimal equilibrium escape-

ent for a single cohort, only tracking the population in the har-

ested age class. Without loss of generality, consider the cohort, that

s initially in the adult age class. The cohort’s dynamics are given by

τ+1 = ζτ+1a21a32R(xτ − hτ ),

x0 = B3,0 (37)

here xτ = B3,3τ is the adult biomass in the τ th generation and

τ+1 = z3,3τ+3z2,3τ+2z1,3τ+1. The escapement policy that maximizes{
∞∑

τ=0

ρ3τ p3h3τ

}
(38)

s

′(σt) = (1 + δ)3

a32a21

, (39)

ince this formulation satisfies the one-dimensional optimization

roblem with fixed per unit cost and concave positive recruitment

n [34]. Note that the optimal escapement is the same as in the deter-

inistic case, R′(σ ∗) = α, when substituting a31 = a11 = a22 = a33 =
into Eq. (15).

Now consider the full stage-structured model, but again assume

shing can only occur in the adult size class. The model for adult har-

est is

1,t+1 = z1,t+1[R(σt) + a11B1,t ]

2,t+1 = z2,t+1[a21B1,t + a22B2,t ]

3,t+1 = z3,t+1[a31B1,t + a32B2,t + a33σt ]. (40)

irst we maximize expected discounted net revenue over a fixed time

orizon T,{
T∑

t=0

ρt p3ht

}
, (41)

nd then let T → ∞. We proceed with a calculation similar to the one

n Section 7.3 of [1], but extend it to our three-dimensional frame-

ork. Define the value function

(�Bt) = max
σt

{p3(B3,t − σt) + ρE{V(Bt+1)}}. (42)

t the final time, it is clearly optimal to harvest everything. Hence,
∗
T

= 0, yielding V( �BT ) = p3B3,T . Therefore,

V(�BT−1) = max
σT−1

{p3(B3,T−1 − σT−1) + ρE{pB3,T }}. (43)
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Fig. 1. Expected net revenue for eight immature fish escapement strategies, aver-

aged over ten million simulations (confidence intervals are negligible due to the large

sample size). The green dashed line is the analytic “variance corrected” optimal es-

capement strategy in the stochastic logistic recruitment model (563.0) and the blue

dot-dashed line corresponds to the optimal escapement strategy for the correspond-

ing deterministic model (619.3). The parameters are a32 = 0.83, a21 = 2, r = 1.65, K =
2000, p2 = 5, δ = 0.1 and zt = 0.8 with probability 5/7 and zt = 1.5 with probability

2/7.
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Using the dynamic model (40) to write B3, T in terms of adult, imma-

ture and juvenile biomass at time T − 1, and noting that these values

are constants, we get σ ∗
T−1

= 0 as well. To calculate σ ∗
T−2

, we con-

tinue iterating backwards, substituting V(�BT−1) into the formula for

(�BT−2). It can be shown, via simple algebra, that finding σ ∗
T−2

, is

equivalent to maximizing the function

wT−2(σT−2) ≡ (ρa33 − 1)σT−2 + ρ2a31R(σT−2), (44)

and hence σ ∗
T−2

is the solution to

R′(σ ∗
T−2) = 1 − ρa33

ρ2a31

. (45)

As we proceed backwards in time, to calculate the optimal escape-

ment strategy at time T − n, σ ∗
T−n, a pattern emerges for wT−n(σT−n).

That is, for n ≥ 3,

wT−n(σT−n) = −σT−n + ρa33σT−n + a31R(σT−n)
n∑

j=2

ρ ja j−2
11

+a32a21R(σT−n)
n∑

j=3

j−3∑
i=0

ρ jai
22aj−i−3

11
. (46)

As n → ∞, with n < T, the above sequence of functions converges to

w(σ ) = − σ + ρa33σ + ρ2a31

1 − a11ρ
R(σ )

+ ρ3a32a21

(1 − ρa22)(1 − ρa11)
R(σ ). (47)

Therefore, at a stationary distribution, the optimal escapement strat-

egy is given by R′(σ ) = α, the same as in Case (1) of our deterministic

analysis.

4.2. When harvesting immatures

Now consider the simplified, stochastic, age-structured model,

where adults die after spawning and only immatures are harvested.

B1,t+1 = z1,t+1R(B3,t)

B2,t+1 = z2,t+1a21B1,t

B3,t+1 = z3,t+1a32(B2,t − ηt). (48)

In this case the single cohort dynamics are given by

yτ+1 = ξτ+1a21R(ντ+1a32[yτ − ητ ]),

y0 = B2,0 (49)

where yτ = B2,3τ is the immature biomass in the τ th generation

of a cohort which started as immatures, ξτ+1 = z2,3τ+3z1,3τ+2, and

ντ+1 = z3,3τ+1. We wish to find the escapement that maximizes

E

{
T∑

τ=0

ρ3τ p2η3τ

}
. (50)

A similar stochastic dynamic programming argument, to the one in

the previous section, can be used to show that the optimal immature

escapement policy, s∗ is the solution to

E

[
ντ+1R′(ντ+1a32s)

]
= (1 + δ)3

a32a21

. (51)

For the logistic recruitment function, this equation has the closed

form solution,

s∗ =
[

k

2ra32

][
r − (1 + δ)3

a32a21

][
1

1 + var(ντ+1)

]
, (52)

which is just 1/(1 + var[z3,t ]) times the optimal escapement pol-

icy for a deterministic model with logistic recruitment. There-

fore, when recruitment and survival vary randomly over time, if a
anager chooses to fish immature biomass, he should fish more ag-

ressively than in the deterministic case. However, if the manager

arvests adults, he should do so as if the system is deterministic.

In order to verify these predictions, we simulated 20 million re-

lizations of this system with the environmental noise distributed

s a discrete probability distribution, zt = 0.8 with probability 5/7

nd zt = 1.5 with probability 2/7, under eight immature escapement

trategies including the analytic stochastic optimal escapement rule

52) and the deterministic optimal escapement rule (see Fig. 1). Note

hat the calculations require the population to be self sustaining at

he optimal escapement value, such that B2,t − s∗
t ≥ 0 for all t, at sta-

ionary distribution. When this assumption is violated, the optimal

scapement policy is still lower than in the deterministic setting,

owever 1/(1 + var(z3,t)) may be an overcorrection. See Fig. 2 for an

xample where three “bad years” can cause less immature biomass to

eturn to the immature stage than what initially escaped three years

rior, and notice that the general concept, that you fish more aggres-

ively in the stochastic model, is still true.

.3. The effect of the recruitment function

The logistic recruitment function allowed for a closed form ana-

ytic solution to Eq. (51). However, there is no analytically tractable

olution to (51) for most density-dependent recruitment functions.

e would like to know if the result that a manager should fish imma-

ures more aggressively under environmental stochasticity is general

or all density-dependent recruitment functions.

Let s∗ be the optimal stationary escapement of immature fish if

here is no stochasticity. In this case equilibrium spawner biomass is
∗ = a32s∗. We note that if[
ντ+1R′(ντ+1σ

∗)
]

>
(1 + δ)3

a32a21

, (53)

hen the expected biological growth rate is higher than the discount

ate and one should therefore leave more fish in the ocean (i.e. in-

rease escapement, higher than s∗). If the inequality in (53) is re-

ersed, it is optimal to decrease escapement under environmental

tochasticity. Define
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Fig. 2. Expected net revenue for eight immature fish escapement strategies, averaged

over ten million simulations with 95 percent confidence intervals. z1,t = z2,t = z3,t ,

with z1, t distributed uniformly on (0.4, 1.6). The green dashed line is the “variance cor-

rected” optimal escapement strategy in the stochastic logistic recruitment model and

the blue dot-dashed line corresponds to the optimal escapement strategy for the cor-

responding deterministic model. The parameters are a32 = 0.9, a21 = 1.05, a11 = a22 =
a33 = 0, r = 1.5, K = 2000, p2 = 5, δ = 0.1. Note that in this case the assumptions used

to derive the optimal escapement strategy do not hold because B2,t − s∗
t ≥ 0 require-

ment is not satisfied for all t, since 0.42a21R(0.4a32s∗) < s∗ (meaning a series of bad

years can send the stock below the calculated optimal escapement level). However,

the general concept that you fish more aggressively in the stochastic model is still true

in this example.
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Fig. 3. Expected discounted net revenue for 9 immature escapements for a stochas-

tic fishery with Ricker recruitment with 95 % confidence intervals, averaged over one

million simulations. The dashed line is the optimal escapement strategy for the corre-

sponding deterministic model (1390.7), calculated by solving s∗ as in Case (2), numeri-

cally, using the function optimize in R. The parameters are a32 = 1.2, a21 = 1.1, b1 =
2, b2 = 0.0002, p2 = 3.43, p3 = 1.66, δ = 0.08 and zt = 0.8 with probability 5/7 and

zt = 1.5 with probability 2/7.
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f (ν) ≡ νR′(νσ ∗). (54)

y Jensen’s inequality, if f is strictly convex on the support of ν ,[
f (ν)

]
> f (E[ν]) = f (1) = (1 + δ)3

a32a21

. (55)

imilarly if f is strictly concave on the support of ν , E

[
f (ν)

]
< (1 +

)3/(a32a21). This means that if f′′(ν) > 0, for all ν , Eq. (53) is satisfied

nd it is more profitable to increase escapement, and if f′′(ν) < 0 it is

ore profitable to decrease escapement. Noting that

f ′′(ν) = 2σ ∗R′′(νσ ∗) + (σ ∗)2νR′′′(νσ ∗), (56)

t is possible to calculate when fishing should be more or less aggres-

ive for specific recruitment functions, even when such functions do

ot allow for tractable solutions to Eq. (51).

For logistic recruitment, (30) with r > (1 + δ)3/(a21a32), we note

hat f′′(ν) < 0 for all ν > 0 and σ ∗ > 0. This means it is more prof-

table to decrease the escapement of immatures, which agrees with

ur analytic optimal escapement rule (52).

More aggressive fishing than in the deterministic case is also op-

imal if recruitment follows a Ricker curve,

(σ ) = b1σ e−b2σ , (57)

ith the parameters and random variables chosen such that

(1 + δ)3

zmina21a32

< b1 <
e2

zmaxa21a32

, (58)

here zmin = mint (z1,t z2,t z3,t), zmax = maxt (z1,t z2,t z3,t), and b2 > 0.

e also restrict the domain for yτ in Eq. (49) to the set (0, 2/b2) and

ote that because of condition (58), this set is invariant under arbi-

rarily many iterations of (49) (see [35] for a proof). Note that R is

oncave on this restricted, invariant set.

Since for Ricker recruitment R′(σ ) < 0 for all σ > 1/b2, by the

ule R′(σ ∗) = α, σ ∗ will always be less than 1/b2. Therefore, as long

s the support of ν does not contain values large enough such that
σ ∗ > 1/b2, it will be more profitable to decrease escapement. We

imulated expected discounted net revenue when harvesting imma-

ures in a stochastic fishery with a Ricker spawner–recruit relation-

hip, and the example agrees with our result (Fig. 3).

Similarly, it can be shown that for the monotone recruitment func-

ion R(σ ) = b1 log (1 + b2σ), it is also always profitable to decrease

scapement. However, this is not true for all monotone recruitment

unctions. For Beverton–Holt recruitment, (33), both more aggressive

nd more conservative fishing can be optimal depending on the pa-

ameters. In this case, f′′(ν) > 0 for all ν if b2σ
∗min (ν) > 2, and f′′(ν)

0 for all ν if b2σ
∗max (ν) < 2. Substituting in

∗ = 1

b2

[√
ρ3b1a21a32 − 1

]
, (59)

eans that it is more profitable to increase immature escape-

ent if
√

ρ3b1a21a32 > 1 + 2/ min (ν) and decrease escapement if

ρ3b1a21a32 < 1 + 2/ max (ν).

The above example highlights how optimal immature escape-

ent, under environmental stochasticity depends on the third

erivative of R. Since the second derivative of R will be negative for

ll compensatory and over-compensatory recruitment functions near
∗, it is always more profitable to fish more aggressively when R′′ ′ is

egative. However, increasing escapement can be more profitable if
′′ ′(σ ∗) is positive, especially if σ ∗ is large (see Table 1) .

.4. Justification of single-stage harvest

In the stochastic case, we only calculated the optimal escapement

trategy assuming exclusive harvest of either adults or immatures.

his was a mathematical simplification. However, exclusive harvest

ill be optimal in the stochastic system in some circumstances.

Consider the stochastic stage-structured population model (40),

ith the addition of immature harvest, as in the deterministic

ptimization problem. Below, we prove that under environmental

tochasticity, it is less profitable, in expectation, to increase imma-

ure harvest from zero, given any self-sustaining adult escapement

trategy, as long as the condition for exclusive adult harvest in the

eterministic model is met.
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Table 1

The effect of environmental stochasticity on the optimal escapement of immature fish for different spawner–recruitment relation-

ships when the variance of the environmental noise is small.

Recruitment function Functional form Parameter constraints Effect of stochasticity on immature escapement

Discrete logistic R(σ ) = rσ(1 − σ/k) r >
(1+δ)3

a21 a32
, Decrease escapement

k > 0 by the multiplicative

factor 1/(1 + var[z3,t ])

Ricker R(σ ) = b1σ e−b2σ (1+δ)3

a21 a32
< b1 < e2

a21 a32
, Decrease escapement

b2 > 0

Beverton–Holt R(σ ) = b1σ/(1 + b2σ) b1 >
(1+δ)3

a21 a32
, Decrease escapement if

b2 > 0 σ ∗ < 2/b2, increase

escapement if σ ∗ > 2/b2

Log R(σ ) = b1 log (1 + b2σ) b1 >
(1+δ)3

a21 a32
, Decrease escapement

b2 > 0
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Proposition 1. When letting σ units of adult biomass escape harvest,

assuming σ is self-sustaining, if ρ(a22 p2 + a32 p3) > p2, then in com-

parison to harvesting ht = B3,t − σ adults and ηt = 0 immatures, har-

vesting an additional small amount of immature biomass ηt > 0, de-

creases expected discounted net revenue.

Proof. Assume a self sustaining adult escapement strategy, σ , and let

J be expected net revenue of harvesting B2,t − s adult biomass and ηt

immature biomass, for each year t,

J = E

{
∞∑

t=0

ρt(p2ηt + p2[B3,t − σ ])

}
. (60)

We show that if ρ(a22 p2 + a32 p3) > p2, then ∂ J/∂ητ < 0, for all ητ

such that σ adult escapement is self-sustaining.

∂ J

∂ητ
= E

{
ρτ p2 − ρτ+1ητ z3,τ+1

(
1 +

∞∑
i=1

i−1∏
j=0

z2,τ− jρ
iai

22

)}

= ρτ
(

p2 − ρp3a32

1 − ρa22

)
, (61)

which is less than zero if ρ(a22 p2 + a32 p3) > p2. �

Consider the stochastic age-structured population model (48)

with the addition of adult harvest. In this case, a manager should not

harvest any adults for small fluctuations in adult biomass above opti-

mal adult escapement (the expected adult biomass that results from

letting a32s∗ immature biomass escape). However, when fluctuations

are large, in good years, there is potentially a benefit to harvesting

some excess adult biomass prior to recruitment. This can be summa-

rized as a proposition.

Proposition 2. When letting s units of immature biomass escape har-

vest, assuming s is self-sustaining, if ρ2p2a21R′(max (z3, t)a32s) > p3,

then in comparison to harvesting ηt = B2,t − s immatures and ht = 0

adults, harvesting any additional adults ht > 0, decreases expected dis-

counted net revenue.

Proof. Assume an immature escapement strategy, s, is deployed and

let J be expected net revenue,

J = E

{
∞∑

t=0

ρt(p3ht + p2[B2,t − s])

}
. (62)

We show that if ρ2p2a21R′(max (z3, t)a32s) > p3, then ∂ J/∂hτ < 0, at

hτ = 0, for any arbitrary time τ .

∂ J

∂hτ
= E

{
ρτ p3 − ρτ+2 p2z2,τ+2z1,τ+1a21R′(z3,τ a32sτ − hτ )

}
≤ ρτ [p3 − ρ2 p2a21R′( max (z3,t)a32sτ − hτ )]. (63)

The inequality is guaranteed by the assumption that R is concave.

Plugging in hτ = 0 yields the desired result. �
 v
. Hard clam example

Historically, the hard clam fishery has been one of the most lucra-

ive fisheries in New York state and the largest shellfish fishery on the

ast coast of North America [21]. We use a snap-shot of this fishery

irca 1980 as an example for our model. In New York, the clams are

old in three common varieties: littlenecks (width < 36.5 mm), cher-

ystones (width < 41.3 mm) and chowders (width > 41.3 mm) [21].

s the clams grow, their flesh becomes tough and less desirable. Al-

hough smaller clams command the highest price, it is illegal to har-

est clams with a width less than 25.4 mm in the United States [21].

e classify the clams that are too small to be legally harvested as

uveniles, littleneck clams as immatures and both cherrystones and

howders as adults. Clams with a width less than 25 mm do not typ-

cally contribute to reproduction [21]. While littleneck clams can re-

roduce, their average fecundity is only about one third of cherry-

tones and chowders and hence, we ignore it as a mathematical sim-

lification. On average it takes juveniles two years to grow larger than

5.4 mm, and another two years to become cherrystones [36]. The

robability a juvenile survives is 0.16 [37] and in the absence of har-

est, immature and adult survival is 0.91 [38]. The respective weights

f the three sizes of clam were calculated from their shell length as

eported by Anderson et al. [39] using the relationship weight[g] =
0.671 × length[cm])3 [40], yielding juvenile, immature and adult

lam weights of 4.50, 57.4 and 158 g, respectively. The above assump-

ions yield parameters,

a11 = (survival prob.)(transition prob.) = 0.16 × 0.5 = 0.08,

a21 = (survival prob.)(transition prob.)(growth)

= 0.16 × 0.5 × 57.4/4.5 = 1.02,

ith the rest calculated similarly, giving a22 = 0.46, a31 = 0 a32 =
.25, and a33 = 0.91. An adult clam produces, on average, seven mil-

ion eggs per spawning event, but the probability of larvae survival is

ery small, estimated at 0.00058 over five days [38]. Assuming larva

urvival continues at this rate for the ten days it takes to develop into

juvenile clam (studies reviewed in [41] ranged from eight days to

wo weeks) and that recruitment follows the Beverton–Holt model,

hen b1 = 2.35. The carrying capacity of this fishery is unknown, so

e set it to be equal to the largest reported historical landing (as

eported in [42]), yielding b2 = 4.42 × 10−5. On October 1, 1980 the

rice for littlenecks and cherrystones were p2 = 2228 and p3 = 527.7

SD per metric ton, respectively [42]. We arbitrarily set the baseline

iscount rate to δ = 0.07.

Under this parameterization, it is more valuable to fish the im-

ature stage class exclusively. The sensitivity of the optimal equilib-

ium biomass to the parameter values is shown in Fig. 4. As is stan-

ard for bioeconomic models, higher discount rates lead to lower

quilibrium stock biomass. Equilibrium biomass increases with aij.

f a22 is small, only immatures are harvested, but for large a22 har-

est switches to adults and stock sizes increase. As a increases,
31
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Fig. 4. Equilibrium adult (black solid line), immature (red dotted line) and juvenile (green dashed line) biomass as a function of each parameter. Recruitment is Beverton–Holt and

baseline parameter values are a11 = 0.08, a21 = 1.02, a22 = 0.46, a32 = 1.25, a33 = 0.91, δ = 0.07, p2 = 2228, p3 = 527.7, b1 = 2.3, and b2 = 4.42 × 10−5 and were chosen to match

values reported in the literature for hard clam.
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ptimal harvest switches from only fishing immatures to harvesting

ome adults in addition to all of the immatures. This is important be-

ause it says that if the probability of transitioning from a sub-legal

ize clam directly into a cherrystone was underestimated, it could ex-

lain why cherrystones and chowders are harvested in practice.

Using the parameters above, we added environmental stochastic-

ty to this example as described in (36), with z1,t = z2,t = z3,t and z1, t

ndependently identically distributed such that z1,t = 0.8 with prob-

bility 5/7 and z1,t = 1.5 with a probability 2/7, and calculated ex-

ected discounted net revenue under two discount rates, a conserva-

ive rate of δ = 0.07 and a myopic rate of δ = 0.35 (the median fisher

ersonal discount rate as reported in [43]). For δ = 0.07, stochastic-

ty means the best strategy is to fish more conservatively than in the

eterministic scenario (see Fig. 5a), which we would expect, based

n our analytic calculation for the effect of stochasticity on immature

scapement under Beverton–Holt recruitment, since σ ∗ = 103, 312 >

5, 227 = 2/b2. For δ = 0.35, stochasticity means the best strategy

s to fish more aggressively than in the deterministic scenario (see

ig. 5b), which we would also expect, based on our analytic calcula-

ion, since, for this discount rate, σ ∗ = 32, 892 < 45, 227 = 2/b2.1

If stochastic fluctuations are higher for hard clam than in this hy-

othetical example, Proposition (2) also suggests a possible reason

or why commercial fishing operations harvest adults in practice, at

east in good years.
1 Note we assumed a33 = 0 in our analytic calculation for optimal immature escape-

ent under environmental stochasticity. However, the calculation appears to provide

he correct intuition in the above cases where a33 > 0.

w

s

i

. Discussion

While optimal harvest strategies for age-structured populations

ave been widely studied in the bioeconomics literature, little is

nown about how environmental stochasticity affects the optimal

arvest of structured populations. In this paper, we developed op-

imal, steady state, escapement rules for a stage-structured fish

tock, where transitions between all classes were possible (except

or shrinking) and used a stochastic version of the model to extend

lassic theoretical results on the optimal harvest of stochastic one-

imensional models [30] to structured populations.

Two discrete-time, size-structured models have been analyzed

reviously [22,23]. Setting fecundity of small fish equal to zero in

ahvonen’s two size-class model [23], yields a similar equation for

ptimal offspring abundance to the equation we derived for opti-

al biomass escapement, R′(σ ∗) = α, as long as we set the skipping

tages term, a31, equal to zero. The only minor difference is that the

iscount rate is cubed in our equation and squared in Tahvonen’s,

hich matches the 3-year vs. 2-year life cycles in the two models, re-

pectively. This optimal amount of biomass (or abundance in Tahvo-

en’s model) follows a rule similar to the “golden rule of bioeco-

omics” derived for one dimensional models, under no harvest costs,

here the marginal productivity of the fish stock is equal to the dis-

ount rate [1]. The difference is that in size and stage-structured mod-

ls, stock productivity and discounting interact in more complicated

ays due to all the possible transitions between the various stage or

ize classes.

Some aspects of Tahvonen’s models are more general than ours,

ncluding the possibility of a nonlinear objective function and
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Fig. 5. Expected discounted net revenue for hard clam escapement levels in the stochastic model (black circles) and for the deterministic model (red diamonds) for two values

of the discount rate (a) δ = 0.07 and (b) δ = 0.35. Error bars represent 95 percent confidence intervals for the mean. The dashed line is the theoretical, deterministic, optimal

escapement, s∗ , for the corresponding discount rate. Note that for δ = 0.35, only a few time steps contribute heavily to discounted net revenue, so we had to compute the net

revenue under each escapement strategy for 100 million simulations in order to get an accurate estimate of the expectations plotted in (b), whereas, only ten million simulations

were required to generate (a).

a

i

c

i

i

m

t

a

t

i

b

j

s

c

c

d

m

e

m

i

m

A

t

m

m

g

S

reproduction by all stage-classes. These generalities combined with

the assumption that harvest occurs after adult recruitment, can

lead to the existence of cyclical interior solutions corresponding to

partial harvests of both immature and adult stages. Tahvonen reveals

this possibility by studying the stability of optimal harvest solutions.

Since our primary goal was to study the effect of stochasticity we

leave stability analysis in our deterministic setting as future direction.

However, other aspects of Tahvonen’s model are more restrictive,

such as the assumption that individuals do not skip stages and that

dynamics are deterministic. Some species can undergo short periods

of rapid growth with high variability among individuals, and hence

skipping stages may be common for structured populations. For ex-

ample, it is possible for a large juvenile clam to transition into a cher-

rystone in one year [36]. We have shown how skipping stages can

create an additional case where it is optimal to harvest all of the early

stage and in addition partially harvest the late stage, even though it

is less valuable.

For a linear objective function, as in one-dimensional models [30],

stochasticity does not affect optimal adult escapement. However, if

harvest occurs during an immature stage, we showed that random

fluctuations in stock dynamics can affect the optimal escapement

strategy depending on the second and third derivative of the recruit-

ment function.

The reason why stochasticity does not affect optimal adult es-

capement, in this model, is that we assumed stochastic fluctuations

in adult population biomass occur prior to harvest, meaning there

is no stochasticity during the short period between adult harvest

and reproduction. This is a standard assumption in stochastic one-

dimensional biomass models [1,30], but it means that adult harvest,

through a self-sustaining escapement rule, allows for a determinis-

tic amount of biomass to reproduce. On the other hand, an immature

biomass escapement rule allows for stochasticity to enter the den-

sity dependent recruitment function through fluctuations in the re-

alizations of unharvested reproductive-adult biomass. If stochastic-

ity were allowed to occur between adult harvest and reproduction,

we would expect similar results on how stochasticity affects optimal
 i
dult escapement to the results presented in this paper for optimal

mmature escapement.

In the stochastic model, we assumed the manager was either ex-

lusively harvesting immatures or adults. Exclusive adult harvest is

ndeed optimal under the same condition as presented in Case (1)

n the deterministic problem. However, when this condition is not

et, we can only show that exclusive immature harvest is optimal for

ightly bounded noise. For large fluctuations, partial harvest of adults

nd immatures may be optimal, and hence future analysis is required

o determine the best harvest strategies.

The effect of stochasticity on optimal harvest with nonlinear util-

ty remains an open question for stage-structured fisheries. It should

e possible to do similar analysis to what we have done here if the ob-

ective function is separable. For one-dimensional models, Reed [30]

howed that if utility is concave, stochasticity increases optimal es-

apement and if utility is convex, stochasticity decreases optimal es-

apement. It is important to note that concave utility in Reed’s one-

imensional models and concave recruitment in our stage-structured

odel, when harvesting immatures, have a diametrically opposite

ffect on optimal escapement if the third derivative of the recruit-

ent function is negative. Future analysis should shine light on the

nterplay between these two nonlinearities when determining opti-

al harvest in stochastic fisheries.
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