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a b s t r a c t 

Consumer demand for plant and animal products threatens many populations with extinction. The an- 

thropogenic Allee effect (AAE) proposes that such extinctions can be caused by prices for wildlife prod- 

ucts increasing with species rarity. This price-rarity relationship creates financial incentives to extract the 

last remaining individuals of a population, despite higher search and harvest costs. The AAE has become 

a standard approach for conceptualizing the threat of economic markets on endangered species. Despite 

its potential importance for conservation, AAE theory is based on a simple graphical model with lim- 

ited analysis of possible population trajectories. By specifying a general class of functions for price-rarity 

relationships, we show that the classic theory can understate the risk of species extinction. AAE theory 

proposes that only populations below a critical Allee threshold will go extinct due to increasing price- 

rarity relationships. Our analysis shows that this threshold can be much higher than the original theory 

suggests, depending on initial harvest effort. More alarmingly, even species with population sizes above 

this Allee threshold, for which AAE predicts persistence, can be destined to extinction. Introducing even 

a minimum price for harvested individuals, close to zero, can cause large populations to cross the classic 

anthropogenic Allee threshold on a trajectory towards extinction. These results suggest that traditional 

AAE theory may give a false sense of security when managing large harvested populations. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Overexploitation is one of the greatest threats to the conserva-

tion of endangered species ( Maxwell et al., 2016 ). A common ex-

planation for drastic population declines due to over-harvest is the

tragedy of the commons ( Hardin, 1968 ). Under open-access condi-

tions, where profits go to individual users, and losses in future har-

vest are shared by all users, each user has an incentive to drive

the resource to low levels ( Clark, 2010 ). However, in classic open-

access harvest models, Tragedy of the Commons does not explain

population extinctions, because the price-per-unit harvest is fixed

and therefore, the cost of finding and extracting rare individuals

eventually exceeds the price achieved from selling the harvested

resource ( Clark, 1990, 2010 ). 

Prices are not fixed; they depend on market dynamics that re-

flect how much consumers are willing to pay for the resource. For

food, art, and other consumer goods, derived from harvested plants
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nd animals, prices often increase with species rarity ( Angulo and

ourchamp, 2009; Courchamp et al., 2006; Gault et al., 2008; Hins-

ey et al., 2015; Purcell et al., 2014 ). Products from rare species

ecome luxury goods, status symbols, or financial investments for

he wealthy (e.g. rhino horn, Gao et al., 2016 ), where exorbitant

rices paid by consumers incentivize harvesters to absorb the high

osts of searching for and killing the last few individuals. This phe-

omenon is called the “anthropogenic Allee effect” (AAE) where

pecies rarity increases price, and therefore the incentive to har-

est, driving small populations extinct. It is named after the classic

cological concept of a strong Allee effect , where populations de-

line towards zero only if they start below a critical threshold size

due to mate limitation for example] ( Berec et al., 2007; Stephens

t al., 1999 ). Proposed in 2006, ( Courchamp et al., 2006 ) AAE the-

ry argues that price increasing steeply with species rarity induces

n Allee threshold for which populations above the threshold are

ustainably harvested and populations below the threshold go ex-

inct (see Fig. 1 for the original graphical argument). 

Despite significant traction in the literature (e.g. Harris et al.,

013; Hinsley et al., 2015; Purcell et al., 2014 ), there has been no

ormal analysis validating the existence of an AAE in the origi-
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Fig. 1. A graphical representation of the one-dimensional arguments used to propose AAE theory. (a) If the price for a harvested individual is lower than the cost of 

harvesting that individual when the population is small, but the price is higher than cost when the population is large, then classical arguments claim the population 

approaches a stable equilibrium (dark circle). (b) If the opposite is true (price is higher than the cost for small populations and lower than the cost for large populations) 

classic logic suggests that the equilibrium is unstable, creating an Allee threshold. In this paper, we show that these arguments do not always provide correct intuition for 

the dynamics of harvested populations. 
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Fig. 2. Price as a function of population size for different values of z (sensitivity of 

price to population size) when a (minimum price consumers pay when the species 

is abundant) is one, and b (the increased price over a when there is only one indi- 

vidual) is three. Because a = 1 and b = 3 , when there is only one individual, price 

is four in all of these curves. This functional form for price can reproduce all of the 

free-form drawings of price vs population size that were first used to conceptualize 

the AEE in Courchamp et al. (2006) . 
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al open-access harvest models used to postulate AAE theory. In

his paper, we propose a general class of models, which demon-

trate that the intuitive arguments for the existence of an AAE

 Courchamp et al., 2006; Hall et al., 2008 ) can lead to oversim-

lified conclusions. While previous studies, using alternative de-

criptions of market dynamics, demonstrate the possibility of low-

ensity equilibria ( Auger et al., 2010; Clark, 1990 ), population cy-

les ( Burgess et al., 2017 ), and even extinction ( Burgess et al., 2017;

y et al., 2014 ), our paper reveals previously undiscovered model

ehavior. 

From a conservation perspective, these trajectories imply that

he situation may be more dire than original AAE theory sug-

ests. The model produces a rich set of dynamics with the pos-

ibility of classic Lotka–Voltera predator-prey cycles, saddle equi-

ibria, where the Allee population threshold is a function of ini-

ial harvest effort, and even cases where populations with abun-

ance far above the anthropogenic Allee threshold are destined to

erish. 

. The model 

Consider humans harvesting a population of size x , with harvest

ffort y . In the absence of harvest, the population grows at rate r .

ndividuals are harvested at a rate proportional to the product of

arvest effort and population density, with catchability coefficient

 . Harvesters choose to increase their effort if harvest is profitable

nd decrease their effort if it is unprofitable, which is achieved by

etting the change in harvest effort be proportional to the revenue,

inus the cost. Assuming the cost of harvest per-unit-effort, c , is

onstant, and the price for harvested individuals, P ( x ), is a func-

ion of population abundance, the above description can be written

s, 

dx 

dt 
= rx − qxy (1) 

dy 

dt 
= α[ P ( x ) qxy − cy ] (2) 

The parameter α controls the rate at which harvest effort

hanges with respect to market information. High values of α
ean harvesters change effort quickly. We assume all parameters

re greater than or equal to zero. 
We assume a price abundance relationship, 

 (x ) = a + b/x z , (3)

here, a is the minimum price paid per unit harvest when the

pecies is abundant, and b + a is the price when x = 1 . For all z >

, price is highest when the species is rare (small x ). Large z values

ean that price decreases more steeply as the population becomes

bundant, i.e. increases more steeply with rarity (see Fig. 2 ). It

hould be noted that an alternative formulation would have price

etermined by the rate of individuals being supplied to the market

xy ( Auger et al., 2010; Burgess et al., 2017; Clark, 1990 ). We chose

he above function, Eq. (6) , because it matches the price rarity re-

ationships first sketched by Courchamp et al. (2006) to formulate

he original AAE theory. For a more detailed discussion of this as-

umption see the section “Model limitations and assumptions.”
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3. Analysis 

3.1. Lotka–Voltera predator-prey cycles 

In the following three sections we assume a = 0 , meaning as

the population size approaches infinity, price per unit harvest ap-

proaches zero, and then relax this assumption later. 

When harvesters receive a constant price b , independent of

species rarity (i.e. when z = 0 ), this model reduces to exactly the

classic Lotka–Voltera predator-prey equations from ecology, where

harvesters are predators, and the harvested population is prey. But

it turns out there is a wide range of price functions that lead to

solutions qualitatively identical to classic predator-prey cycles (see

Kot, 2003 , for an introduction to predator-prey models). 

There is one positive equilibrium at 

x ∗ = 

(
c 

bq 

) 1 
1 −z 

, y ∗ = 

r 

q 
, (4)

as long as z � = 1. As an aside, z = 1 , is the case where both price

and cost per unit harvest are constant multiples ( b and c / q respec-

tively) of 1/ x . If c / q > b , per-unit harvest cost is higher than price

at all population abundances, and if c / q < b , cost is always lower

than price. Thus, extinction always occurs if c < bq and persistent

growth always occurs if c > bq and the equilibrium above does not

exist (as price and cost per unit harvest never cross). 

In the case where price declines less steeply than per unit har-

vest costs, 0 < z < 1, the system behaves like the classic Lotka–

Voltera predation model, with oscillatory population size and har-

vest effort, with the amplitude of the oscillations depending on ini-

tial conditions ( Fig. 3 a and b). For a proof see Theorem 1 in the

Appendix . 

It should be noted that the intuitive argument provided in

( Courchamp et al., 2006; Hall et al., 2008 ) would lead to an incor-

rect description of the population dynamics in this case. The cost

per unit harvest is c /( qx ) and the price per unit harvest is b / x z with

z < 1 (for example b/ 
√ 

x ), implies that for small populations, cost

is greater than revenue and for large populations cost is smaller

than revenue (see Fig. 1 a). Intuitively, one might falsely conclude

that the equilibrium is stable (see Fig 1 a), when indeed, we have

shown that it is a center and hence not stable ( Fig. 3 a and b). 

It should also be noted that this model is undefined when

x = 0 , for all z > 0, z � = 1, and hence why x = 0 , y = 0 is not an

equilibrium, as in many other population models. 

3.2. Anthropogenic Allee effect 

If price declines more steeply with respect to population size

than per unit harvest costs, z > 1, there are two possible long-

term outcomes, either the population 1) grows to infinity (e.g. grey

area in Fig. 3 c) or 2) crashes to extinction (e.g. the white area in

Fig. 3 c). The fate of the population between extinction and long-

term growth depends both on the initial population size and ini-

tial harvest effort. Note that unlike the intuitive arguments de-

scribed by Courchamp et al. (see Fig. 1 b and the original figures in

Courchamp et al., 2006 ), initial harvest effort plays an important

role. There is no fixed population size for which, if the population

starts above that size it always persists, and if it starts below that

size, it always goes extinct (a concept the authors coin an anthro-

pogenic Allee effect [AAE]). 

If the population size starts below the equilibrium level x ∗ (as

given in Eq. (4) ) and initial harvest effort is small, the population

can still persist (initial conditions in region C, Fig. 3 d). The opposite

is also possible; if the population size starts above the threshold

x ∗ and initial harvest effort is high, the population can still go ex-

tinct (initial conditions in region B in Fig. 3 d). The reason for this is

that for z > 1, the equilibrium (4) , is a saddle (a two-dimensional
quilibrium that does not have the same qualitative behavior as an

nstable equilibrium in an analogous one-dimensional system). It

as both a stable and unstable manifold. The stable manifold acts

s a “separatrix,” a curve in two-dimensional, ( x, y ) space, separat-

ng populations destined for extinction and those that will survive.

or all initial harvest effort s below the stable manifold, the popula-

ion approaches the branch of the unstable manifold which goes to

nfinity. For all harvest effort s above the st able manif old the pop-

lation goes extinct, approaching the upper branch of the unstable

anifold ( Fig. 3 c). 

The slope of the separatrix, at the saddle equilibrium, can be

olved analytically (see Appendix for derivation), as 

 

√ 

αr(z − 1) 

c 

(
c 

bq 

) z 
z−1 

. (5)

For all z > 1, It is easy to show that this expression in-

reases with respect to α, r , and c and decreases in b and q (see

ppendix for proof). The dependence on z is more complicated

han for the other parameters, but the slope increases with z as

ong as c < bq . This means that for high values of population

rowth rate, harvest cost, and harvest effort adjustment rate, the

eparatrix becomes a near vertical line, such that no matter the

nitial harvest effort, small populations to the left of the line are

estined to extinction, and large populations destined to long-term

rowth (as is the case in classic AAE theory). For low values of

hese parameters, the fate of the population is more heavily influ-

nced by initial harvest effort. The opposite is true for the other

arameters (see Fig. S1 in the appendix for plots of how the slope

n Eq. (5) changes with respect to all the parameters). As an exam-

le of how the separatrix changes with respect to α, see Fig. S2 in

he Appendix as well. 

.3. Density dependence 

We now examine the case of density-dependent growth, the

ame as (1) but where the first term in the population growth

quation is replaced with logistic growth to carrying capacity k ,

ather than linear growth 

dx 

dt 
= rx (1 − x/k ) − qxy (6)

This is the starting point for the majority of work on the effect

f price dynamics on harvesting ( Auger et al., 2010; Clark, 1990;

010; Ly et al., 2014; Mansal et al., 2014 ). However, we will show

hat the linear system (1) is a good approximation for the dynam-

cs of the nonlinear system in many scenarios. 

For z = 0 the model reduces to one previously studied for

redator-prey populations ( Kot, 2003 ) and open-access fisheries

 Bjørndal and Conrad, 1987 ), and has been shown to have a sta-

le positive equilibrium ( Bjørndal and Conrad, 1987; Kot, 2003 ). 

For all parameters, there is an equilibrium at x = k, y = 0 (no

arvest). This carrying capacity equilibrium is an unstable saddle if

 < bqk 1 −z , meaning if the cost of harvest is lower than the price

eceived when the population is at carrying capacity, some har-

est will occur, and populations will decline to levels below carry-

ng capacity. If c > bqk 1 −z , the equilibrium is stable, as harvesting

opulations at carrying capacity is unprofitable (see Appendix for

roof). 

or z > 0 with z � = 1, there is an additional equilibrium at: 

 

∗ = 

(
c 

bq 

) 1 
1 −z 

, y ∗ = 

r 

q 

(
1 − x ∗

k 

)
. (7)

This equilibrium has the same population size as in the linear

ase. However, equilibrium harvest effort is reduced by the propor-

ion that x is below carrying capacity, 1 − x ∗/k . 
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Fig. 3. Population dynamics for linear growth model. (a) Phase portrait for dynamics with z = 1 / 2 , and (b) the corresponding time series, from an initial condition of double 

equilibrium population size and harvest effort [inner ring in (a)]. Other parameters are r = 1 , q = . 3 , c = 1 , b = 1 , α = 40 . (c) Phase portrait when z = 2 . The equilibrium of 10 

individuals and harvest effort of 0.1 is a saddle. The stable manifold (solid green line) determines the fate of the population. All initial conditions below (and to the right) 

of it (gray shaded area) lead to population growth, and above it (white area) lead to population extinction. (d) Initial harvest effort and population size combinations where 

one-dimensional arguments (such as those used in classic AAE theory) correctly predicts population extinction, A, and persistence D, and incorrectly predicts population 

extinction, C, and persistence, B. Other parameters are r = 1 , q = 10 , c = 1 , b = 1 , α = 2 . 
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Similar to the linear system, for 0 < z < 1, the dynamics are

scillatory ( Fig. 4 a and b). However, the positive equilibrium, in Eq.

7) , is stable, and all initial conditions spiral in towards it ( Fig. 4 a

nd b). Note though, that if the equilibrium is far below carrying

apacity, the approach to equilibrium is slow, with large amplitude

scillations (which for short management timescales are effectively

s in the linear system) ( Fig. 4 a). 

For z = 1 the dynamics behave similarly to the linear system.

opulations either approach carrying capacity if c > bq or decline

o zero otherwise. 

For z > 1 the dynamics are also similar to the linear case

 Fig. 4 c). If c > bqk 1 −z , which implies x ∗, in Eq. (7) , is below car-

ying capacity, then this equilibrium is an unstable saddle (see

ppendix for proof). The population either declines to zero or ap-

roaches carrying capacity, depending on the initial population

ize and harvest effort. If z > 1 and c < bqk 1 −z then the population

lways declines to zero, since the nontrivial equilibrium induced

z  
y market dynamics is higher than carrying capacity (see appendix

or proof). 

The stability of the x = k, y = 0 equilibrium is consistent with

he above dynamics. In the case where z > 1 and x ∗ is a saddle, x =
, y = 0 equilibrium is locally stable, and unstable when c < bqk 1 −z 

see Appendix ). This just says that when there is a positive saddle

quilibrium with x ∗ < k , as long as the initial condition starts close

nough to x = k, y = 0 , solutions will approach x = k, y = 0 . For the

scillatory case, z < 1, x = k, y = 0 , is an unstable saddle if x ∗ < k .

his is consistent with the corresponding oscillatory dynamics in

ig. 4 a and b. 

.4. Crossing the Allee threshold when there is a minimum price 

Consider the original system (1) with a non-zero minimum

rice, a , regardless of species abundance (i.e. price does not go to

ero as the species becomes very common). This makes the model
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Fig. 4. Dynamics under density dependent growth. (ab) Trajectories for the baseline parameterization with z = 1 / 2 and the added logistic nonlinearity for (a) carrying 

capacity k = 10 0 0 , and (b) k = 50 . Other parameters are r = 1 , q = . 3 , c = 1 , b = 1 , α = 10 . If the equilibrium is far below carrying capacity, k = 10 0 0 , its stability is weak and 

the dynamics are similar to the linear case ( Fig. 3 b), when the equilibrium is close to carrying capacity, k = 50 , the approach to the equilibrium is faster. (c) The phase 

plane, with z = 2 and k = 500 , which behaves the same as in the linear case. Other parameters are r = 1 , q = 10 , c = 1 , b = 1 , α = 2 . (d) When k = 25 in the dynamics are 

qualitatively similar, but with reduced poaching effort at equilibrium and along the stable manifold (solid green curve). 
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more difficult to analyze. However, the equilibria can be computed

analytically for z = 1 / 2 , 1 and 2. 

When z = 1 , and if c > bq , there is an equilibrium at 

x = 

c − bq 

aq 
, y = 

r 

q 
, (8)

and this equilibrium is stable. Otherwise, this equilibrium does not

exist, and the population grows indefinitely. 

For z = 2 , if a > c 2 /(4 bq 2 ), the price per unit harvested is always

greater than the cost, and therefore harvest goes to infinity as the

population goes extinct. If a < c 2 /(4 bq 2 ), there are two equilibria, 

x 1 = 

c −
√ 

c 2 − 4 abq 2 

2 aq 
, y 1 = 

r 

q 
, (9)

x 2 = 

c + 

√ 

c 2 − 4 abq 2 

2 aq 
, y 2 = 

r 

q 
. (10)
inearization (see Appendix ) shows that the smaller equilibrium,

9) , is always an unstable saddle, confirming the similarity of the

ynamics in this case to the dynamics exhibited by our simple

odel (as in Figs. 3 c and 4 c). 

However, the unstable and stable manifold of this saddle con-

ect, forming a homoclinic orbit surrounding the larger equilib-

ium, which is a center ( Fig. 5 a). This is a dire result because

t means that only populations with initial conditions located in-

ide the homoclinic orbit will persist, as all other initial conditions

ill lead to population extinction. This includes large populations

ar above the classic Allee threshold (the smaller equilibrium) and

ence proposes a potential mechanism for how abundant species

ross the Allee threshold on the way to extinction. 

For z = 1 / 2 , there is one equilibrium at 

 = 

2 ac + b 2 q − b 
√ 

4 acq + b 2 q 2 

2 a 2 q 
, y = 

r 

q 
, (11)
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Fig. 5. Dynamics when growth is linear and price is always above a fixed value, a . (a) When z = 2 , trajectories that start in the grey area oscillate around the larger equi- 

librium population size, while trajectories outside of the shaded region eventually approach extinction. The green solid line is the stable manifold of the saddle equilibrium 

and the red dotted line is the unstable manifold. Other parameters are q = 10 , r = 1 , c = 1 , b = . 5 , α = 1 and a = 0 . 04 . When z = 1 / 2 (b), populations oscillate indefinitely as 

they do in Fig. 3 a and b. Other parameters are q = 0 . 3 , r = 1 , c = 1 , b = 1 , α = 10 and a = 0 . 1 . 
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1 we use the word “concave,” as in a concave function to avoid confusion. How- 

ever, the authors in Di Fonzo et al. (2013) refer to this type of decline as convex. 
or which the trace of the Jacobian is zero, and simulation suggests

hat the equilibrium is indeed a center ( Fig. 5 b), just as in the case

or z < 1 for in the simple model, as written in Eq. (1) . 

Combining both density dependence and such a general price

bundance relationship makes an analytic approach difficult. The

 = k, y = 0 equilibrium still exists in this model and is stable if

 > ka + bqk 1 −z . But the other equilibria are not easily solved for

nalytically, even for special cases of z . 

Numerically, we demonstrate that the logistic perturbation to

he linear population growth term breaks the homoclinic orbit and

he larger equilibrium becomes stable ( Fig. 6 ). Once again if k is

arge compared to equilibrium population size, then the dynamics

re similar to the linear system with a homoclinic orbit ( Fig. 6 b

nd d), and when k is small, the approach to equilibrium can be

ast ( Fig. 6 a and b). If harvesters adjust effort quickly, the area for

hich the population persists stretches vertically (compare Fig. 6 a

nd b to c and d). 

For 0 < z < 1 the dynamics ( Fig. 7 ) are similar to the corre-

ponding linear systems ( Figs. 3 and 5 b). 

. Numerical example: elephant poaching 

Elephants have been in rapid decline over the last eight years

ue to increased poaching for ivory ( Gross, 2016 ), and therefore

he international community is quickly implementing new poli-

ies to reduce this illegal harvest (e.g. Biggs et al., 2016 ). How-

ver, to determine which policies are likely to work best, we

ust understand how poaching and elephant population abun-

ance will respond to different price-abundance relationships. To

o this we parameterize our model for African elephant popula-

ions illegally harvested for ivory, using the estimates, r = 0 . 06 , c =
0 0 0 , k = 50 0 , 0 0 0 , x 0 = 30 0 , 0 0 0 , reported in ( Lopes, 2015 ), ex-

ept for q , which we set based on 3.54 elephants killed per poach-

ng expedition as reported in Milner-gulland and Leader-Williams

1992) (assumed to occur at an elephant abundance of x 0 ), yielding

 = 1 . 2 × 10 −5 . Consider two scenarios for how price changes with

espect to population abundance (1) with price highly sensitive to

bundance, b = 4 . 7 × 10 11 and z = 1 . 5 and (2) with price less sen-

itive to abundance, b = 5 . 3 × 10 5 and z = 0 . 5 . Both scenarios yield
 current price paid to poaching gangs of 30 0 0 USD per harvested

lephant, as used in Lopes (2015) . We arbitrarily set α = 0 . 0 0 01 . 

In the scenario where price is less sensitive to abundance, ele-

hant populations oscillated towards a stable equilibrium of 10,300

lephants (or about 0.03 of carrying capacity) alongside intense

ulses of poaching ( Fig. 8 a). When the price is more sensitive to

bundance, elephant populations quickly go extinct. In this case,

he positive saddle equilibrium does not exist; any potential ini-

ial elephant abundance is destined to extinction. This decline be-

omes increasingly more rapid in time leading to a concave 1 rather

han exponential decline ( Fig. 8 b), which have frequently been ob-

erved in time series data of species? abundances (see Di Fonzo

t al., 2013; 2016 ). This elephant example is demonstrative, as we

o not have adequate data to estimate a price abundance relation-

hip for elephant ivory. However, the example shows how impor-

ant it is to learn this relationship, as small differences can mean

he difference between rapid extinction and long-term persistence.

. Model limitations, assumptions, and alternative approaches 

We found that the dynamics of a harvested population are sen-

itive to the description of how the price of harvested individuals

hanges with respect to population abundance. We must first note

 key few assumptions that drove these results. 

To achieve an AAE (with true deterministic extinction), price

ust become infinite as population abundance approaches zero.

he condition is satisfied for all P ( x ), with z > 0, studied in this

aper, and the requirement is necessary because, in standard open

ccess models, the cost of harvest approaches infinity as the stock

pproaches zero. If price were bounded and costs were not, then

n additional low harvest equilibrium would exist, and it would be

table (or a center) because cost would be greater than price for

nfinitesimally small population sizes. While extinctions are pos-

ible using bounded price functions, this requires modification to

ther model components, such as adding an ecological Allee effect

 Verma, 2016 ). 
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Fig. 6. Dynamics when growth is logistic and price is always above a fixed value with z = 2 . The stable (solid, green) and unstable (dashed, red) manifold are displayed for 

(a) α = 1 and k = 50 (b) α = 1 and k = 500 (c) α = 25 and k = 50 and (d) α = 25 and k = 500 . Other parameters are r = 1 , q = 10 , c = 1 , b = 0 . 5 and a = 0 . 004 . The grey area 

indicates all initial combinations of population size and harvest effort that lead to population persistence, and the white areas indicate extinction. For high values of k (bc) 

the population behaves nearly as in the linear case, but the homoclinic orbit is broken and initial conditions that start in the gray area spiral into the stable equilibrium, but 

very slowly. 
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As stated previously, our model is undefined for x = 0 . As x →
0, dy / dt → ∞ , so when simulating the dynamics, it is important to

stop the simulations when y reaches a high threshold value. Addi-

tionally, our model assumes population size is continuous, despite

the impossibility of fractional individuals. We have chosen to use

this continuous approximation because this is the language used

in the foundational papers describing the AAE ( Courchamp et al.,

20 06; Hall et al., 20 08 ) and, additionally, it is easier to describe

price and demand using the units of harvested individuals rather

than population densities. However, a simple rescaling of the vari-

ables to density (individuals per unit area) or biomass is straight-

forward, and should not affect the qualitative nature of the ob-

served dynamics. 

The theory behind the AAE is developed using models where

price, P ( x ), is a function of population abundance ( Courchamp

et al., 2006; Hall et al., 2008 ). In the theory of supply and de-

mand , population abundance can be viewed as “potential” supply
i.e. the amount of the resource available for harvest at any given

ime). However, the actual supply to the market, is a function of

oth abundance and harvest effort, in our model, qxy . There are a

ew open-access fishery models that set price as a function of sup-

ly, P ( qxy ), ( Auger et al., 2010; Clark, 1990; Ly et al., 2014; Mansal

t al., 2014 ) and while none of these models predict an AAE exactly

s it is described in classic AAE theory ( Courchamp et al., 2006 ),

hese models do not consider the more general class of price func-

ions studied here. There is strong evidence that price is negatively

orrelated with species abundance ( Angulo and Courchamp, 2009;

ourchamp et al., 2006; Gault et al., 2008; Hinsley et al., 2015;

urcell et al., 2014 ), but there is also evidence that the price of

raded wildlife products decrease with market supply (e.g. cap-

ive parrot abundance in Australian bird markets Vall-llosera and

assey, 2017 ). Population abundance in the wild could strongly co-

ary with total harvest supplied to the market, and therefore the

ost appropriate model for price may be difficult to determine. 
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Fig. 7. Dynamics when growth is logistic, price is always above a fixed value, and z = 1 / 2 . Population size (solid, black) and harvest effort (dashed, red) through time for 

(a) k = 1 , 0 0 0 and (b) k = 50 . Other parameters are r = 1 , q = 0 . 3 , c = 1 , b = 0 . 5 , α = 10 and a = 0 . 1 . Population always oscillates but approaches a stable equilibrium. The 

approach is quick to equilbrium for small k (b) but slow, similar to the linear growth case, for large k (a). 

Fig. 8. Elephant Case Study. Elephant population size (solid, black) and harvest effort (dashed, red) through time for (a) a less sensitive abundance price relationship, 

b = 5 . 3 × 10 5 and z = 0 . 5 and (b) a more sensitive price abundance relationship, b = 1 . 5 × 10 11 and z = 1 . 5 . Other parameters are set to the baseline values for Elephants in 

southern Africa range states. 
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Unlike most of the models that consider price as a function of

emand ( Auger et al., 2010; Clark, 1990; Ly et al., 2014; Mansal

t al., 2014 ), Burgess et al. (2017) use a nonlinear price-yield re-

ationship, P (Y ) = b/Y z , that can produce an AAE. In their model,

ield is given by Y = qx βy, which includes a parameter, β , rep-

esenting “catch flexibility.” In the special case where β = z = 1 ,

heir model reduces to the system described by Ly et al. (2014) ,

ho showed that these equations cannot create an AAE; the equa-

ions can only produce two types of dynamics, global extinction or

n approach to a stable, positive equilibrium. For the more gen-

ral model, Burgess et al. (2017) show that extinction can occur,

f and only if z > β (or z = β, and r z q < b ). Extinction in this

odel includes both the possibility of an AAE or global extinction.

hile such a model is able to produce an AAE, the complete rigor-

p  
us description of all possible trajectories in this more complicated

ystem is an open area of research. 

Lastly, our model only considered the harvest of a single

pecies. An alternative explanation of population extinctions, to the

AE, is called opportunistic exploitation, where harvesters catch

are species if they happen to encounter them while harvesting

ore common ones ( Branch et al., 2013 ). Models that incorporate

ulti-species harvest and price abundance relationships have yet

o be explored. 

. Discussion 

In this paper we found that standard arguments used to

ropose the existence of the anthropogenic Allee effect (AAE)
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( Courchamp et al., 2006 ), while logically compelling, can provide

misleading intuition. For example, in cases where classic argu-

ments would predict sustainable harvest ( Courchamp et al., 2006;

Hall et al., 2008 ), the approach to a sustainable equilibrium can

be slow and oscillatory, with minimum population sizes close to

zero. In such cases, population extinction is probable, due to demo-

graphic and environmental stochasticity, or processes that reduce

population growth at low abundances (i.e. ecological Allee effects)

( Berec et al., 2007 ). 

In cases where there is a harvest-induced Allee threshold, this

threshold is not solely based on population size, as previously

described in the literature ( Courchamp et al., 2006; Hall et al.,

2008 ), but also depends on initial harvest effort. Despite predic-

tions of persistence in classic AAE theory, populations above the

Allee threshold can go extinct if initial harvest effort is high. In re-

ality, harvest effort can suddenly vary due to external forces (such

as economic crises), a factor that could drive populations extinct,

even when AAE theory would predict stable population sizes. 

When price is not allowed to decline below a critical value,

populations close to carrying capacity, and suffering only mini-

mal initial harvest, are destined to extinction. In such cases, only

a small range of initial population sizes and harvest effort s lead

to long-term persistent populations. This is all despite the fact

that classic AAE theory would predict that these large populations

would remain abundant, leading to a false sense of security. 

In the original AAE model ( Courchamp et al., 2006 ), popula-

tions that start above the Anthropogenic Allee threshold are ar-

gued never to decrease. But then how do populations ever get be-

low this proposed threshold, to begin with? Possibilities include

events unrelated to price-rarity relationships, such as natural disas-

ters and environmental stochasticity. Our mathematical represen-

tations of the graphical models proposed in the founding AAE pa-

pers ( Courchamp et al., 2006; Hall et al., 2008 ), reveal a potential

mechanism for how harvested, abundant populations can decline

below the anthropogenic Allee threshold towards extinction. The

intuition is as follows: adding a minimum price received per har-

vested individual creates an incentive to poach when the popula-

tion is abundant because cost-per-unit harvest is close to zero and

price is always greater than the minimum value. This means that

the separatrix, dividing the extinction and persistence basins of at-

traction, in the model where there is no minimum price (see green

solid curve in Fig. 3 c and d), folds downward for high population

sizes, when introducing a minimum price. This creates the dome

shaped persistence regions and complementary extinction regions

in Figs. 5 a and 6 . 

The reason why increasing the speed at which harvesters ad-

just their effort, α, only stretches the persistence area vertically

and not horizontally, is that α does not affect the population sizes

for which it is profitable to increase poaching effort. It only affects

how quickly harvest effort increases or decreases. As proven for the

case where there is no minimum price, a = 0 , increasing α steep-

ens the separatrix. However, when a > 0, because α simply multi-

plies dy / dt , increasing α not only steepens the initial slope of the

separatrix at the saddle equilibrium, it also makes dy / dt more neg-

ative to the right of the second equilibrium. Therefore, increasing

α makes the downward folding of the separatrix equally as steep. 

The difference in population trajectories produced by models

with only subtle differences in price abundance relationships is

alarming. Data for both prices of wildlife products in combination

with estimates of population abundance are difficult to obtain and

are likely sensitive to many external social, economic and environ-

mental factors. While the AAE is used to inform conservation de-

cisions (e.g. Harris et al., 2013 ), we warn that without an under-

standing of how price is affected by species abundance, it may be

difficult to predict population responses to conservation interven-

tions and thus determine the best management actions to protect
verexploited species. Therefore, it is important to consider a wide

ange of likely scenarios to make sure decisions are robust to dif-

erences in price-abundance relationships. If the best decisions are

ot robust across scenarios, one must consider the value of resolv-

ng model uncertainty ( Maxwell et al., 2015 ), in price abundance

elationships, for making effective management decisions. 
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ppendix 

. Theorems for linear growth model 

heorem 1. If 0 ≤ z < 1, the positive equilibrium (4) is a center,

urrounded by infinitely many closed periodic orbits. 

roof. From (1) 

dx 

dy 
= 

x (r − qy ) 

y (bqx 1 −z − c) 
(12)

y separation of variables the solution to the above is the solution,

 x, y ), to 

 

−c e 
bqx 1 −z 

1 −z = C y r e −qy (13)

here C is a constant. Equating the left and right hand side shows

hat the solutions are closed orbits. That is let 

 1 (x ) = x −c e 
bqx 1 −z 

1 −z (14)

 2 (y ) = C y r e −qy (15)

ote that if 0 ≤ z < 1, w 1 ( x ) → ∞ as both x → 0 and as x →
 , and that dw 1 / dx < 0 for x < 

(
c 

bq 

) 1 
1 −z 

and dw 1 / dx > 0 for x >

c 
bq 

) 1 
1 −z 

. Similarly, w 2 ( y ) → 0 as both y → 0 and as y → ∞ , and

w 2 / dy < 0 for y > r / q and dw 2 / dy > 0 for y < r / q . Therefore the

olution ( x, y ) to w 1 (x ) = w 2 (y ) is a closed orbit. �

roposition 1. If z > 1, the positive equilibrium (4) is a saddle. 

roof. The determinant of the Jacobian matrix for the system (1) ,

valuated at (4) , is always negative for z > 1. �

The slope of the “separatrix” near the saddle equilibrium, writ-

en in (5) , is solved by calculating the slope of the eigenvector

corresponding to the negative eigenvalue) of the Jacobian matrix

or the system (1) , evaluated at the saddle equilibrium (4) , which

e computed using Mathematica. We note the following theorem

bout this slope, which states that the separatrix is steepest for

igh values of α, r and c and more shallow for high b and q . 

roposition 2. If z > 1, the eigenvector of the Jacobian corresponding

o the stable manifold of the saddle equilibrium (4) decreases in steep-

ess with respect to b and q, and increases in steepness with respect

o α, r, and c and also for z if c < bq. 

roof. With a bit of algebra the slope of the eigenvector can be

ewritten as 

 

1 
1 −z c 

z+1 
2 z−2 q 

z 
1 −z 

√ 

αr(z − 1) (16)

http://dx.doi.org/10.13039/100007615
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hich is clearly increasing with α, r , and c and decreasing with b

nd q . The derivative of (16) with respect to z is 

αbr 
(

c 
bq 

) z 
z−1 

√ 

z − 1 − log 
(

c 
bq 

)
c(z − 1) 

, (17) 

hich is always positive if z > 1 and c < bq . Hence, the slope of

he eigenvector increases with z , if z > 1 and c < bq . �

. Stability analysis for logistic growth model 

roposition 3. If c > bqk 1 −z , the equilibrium x = k, y = 0 is locally

table and if c < bqk 1 −z , the equilibrium x = k, y = 0 is a saddle 

roof. The trace of the Jacobian evaluated at x = k, y = 0 , is

qk 1 −z − c − r and the determinant is r 
(
c − bqk 1 −z 

)
. Therefore the

eterminant is negative for c < bqk 1 −z meaning x = k, y = 0 is a

addle. The determinant is positive and trace is negative for c >

qk 1 −z meaning x = k, y = 0 is stable. �

roposition 4. If z > 1, and c < bqk 1 −z , the positive equilibrium

7) is a saddle, with x ∗ < k. 

roof. The determinant of the Jacobian evaluated at (7) has the

ame sign as the quantity 

 ≡ c 

(
c 

bq 

) z 
z−1 + bq 

(
[1 − z] k + [ z − 2] 

(
c 

bq 

) z 
z−1 

)
. (18)

or z > 0, z � = 1, D = 0 ⇔ k = (bq/c) 
1 

z−1 = x ∗. If z > 1, D is

learly negative as k → ∞ and therefore by continuity, D < 0

f k > (bq/c) 
1 

z−1 , which can be equivalently written as c < bqk 1 −z .

his proves (7) is a saddle. �

Note that if z > 1 and c > bqk 1 −z this equilibrium has x ∗ > k

nd y ∗ < 0 and is therefore not biologically relevant. The fact that

 k , 0) is unstable and the only positive equilibria, means that the

opulation goes extinct and harvest effort approaches infinity. 

roposition 5. If 0 < z < 1, and c > bqk 1 −z , the positive equilibrium

7) is locally stable, with x ∗ < k. 

roof. By a similar argument to 4 , if 0 < z < 1 then D > 0 and

 

∗ < k . For z � = 1, the trace of the Jacobian evaluated at (7) is T =
r(bq/c) 

1 
z−1 /k, which negative for all parameter values. D > 0 and

 < 0 means the equilibrium is stable. �

. Stability analysis for linear growth model with minimal price, a 

roposition 6. If c > 2 q 
√ 

ab , and z = 2 , the equilibrium (9) is a sad-

le 

roof. The trace of the Jacobian evaluated at the equilibrium

9) has a determinant of 

αq 

(
c 
√ 

c 2 − 4 abq 2 + 4 abq 2 − c 2 
)

√ 

c 2 − 4 abq 2 − c 
(19) 

hich is negative for all c > 2 q 
√ 

ab . �

. Stability analysis for logistic growth model with minimal price 

roposition 7. If c > aqk + bqk 1 −z , the equilibrium x = k, y = 0 is lo-

ally stable and if c < aqk + bqk 1 −z , the equilibrium x = k, y = 0 is a

addle 
roof. The trace of the Jacobian evaluated at x = k, y = 0 , is aqk +
qk 1 −z − c − r and the determinant is r 

(
c − aqk − bqk 1 −z 

)
. Therefore

he determinant is negative for c < aqk + bqk 1 −z meaning x = k, y =
 is a saddle. The determinant is positive and trace is negative for

 > aqk + bqk 1 −z meaning x = k, y = 0 is stable. �
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